Von mises calculus for statistical functions
نویسندگان
چکیده
منابع مشابه
Quadratic semiparametric Von Mises calculus.
We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching c...
متن کاملApproximations for Von Mises
We prove Edgeworth expansions for degenerate von Mises statistics like the Beran, Watson, and Cram er-von Mises goodness-of-t statistics. Furthermore, we show that the bootstrap approximation works up to an error of order O(N ?1=2) and that Bootstrap based conndence regions attain a prescribed conndence level up to the order O(n ?1).
متن کاملPerformance Analysis of VON MISES’ Motor Calculus within Modelica
This paper presents an alternative concept of modelling multibody systems within Modelica, the socalled motor calculus. This approach was introduced by R. VON MISES in 1924 and can be used to describe the dynamical behaviour of spatial multibody systems in a very efficient way. While the equations clearly take a very simple form in terms of motor algebra, the numerical efficiency is still an op...
متن کاملAlmost Sure Behaviour of U - Statistics and Von Mises ' Differentiable Statistical Functions
متن کامل
Cramér-von Mises regression
Consider a linear regression model with unknown regression parameters 0 and independent errors of unknown distribution. Block the observations into q groups whose independent variables have a common value and measure the homogeneity of the blocks of residuals by a Cramér-von Mises q-sample statistic Tq( ). This statistic is designed so that its expected value as a function of the chosen regress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1986
ISSN: 0001-8708
DOI: 10.1016/0001-8708(86)90010-1